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Abstract. Minipermeameters are rapidly becoming a popular tool for collecting localized
measurements of permeability in both laboratory and field studies. While one of the main
advantages of minipermeameters is their ability to collect data on various support
volumes, there have been only limited attempts to analyze their size and geometry. We
define the support volume of minipermeameter measurements as a region containing 90%
of the total gas flow, i.e., a region bounded by the 10% streamline. Using our new
semianalytical solutions for the Stokes’ stream function, we demonstrate that the support
volume has a shape of the semitoroid adjacent to the sample surface. Hence there is a
blind spot directly below the minipermeameter, which is not probed by the measurement.
We demonstrate that the support volume of the minipermeameter measurements
decreases with the tip-seal’s ratio (a ratio of the inner tip-seal radius to the outer tip-seal
radius), while the size of the corresponding blind spot increases.

1. Introduction

Delineation of the spatial distribution of permeability in
water- and oil-bearing formations is one of the major chal-
lenges in hydrogeology and petroleum engineering. Specifi-
cally, this is an ill-posed inverse problem, and hence it is in-
herently difficult to solve. Mathematical models that provide a
means to extract permeability data indirectly from experimen-
tal measurements of dependent quantities (e.g., pressure head
and flow rates) do so by defining a related well-posed problem
through some form of regularization. The necessary presence
of this regularization, which may not be stated explicitly, is
likely a critical factor in the recent debate over the scale de-
pendence of permeability measurements. Consequently, there
is a growing interest in experimental procedures that possess
well-defined regions of investigation or support volumes.

Minipermeameters seem well suited for this purpose be-
cause they induce a localized flow by injecting gas into a sam-
ple through a small tip seal. Although these devices were first
described by Dykstra and Parsons [1950], it was not until re-
cently that Goggin et al. [1988] proposed a mathematical model
for the application of the minipermeameter to localized per-
meability measurements. In particular, for the case of steady
state gas flow, Goggin et al. [1988] introduced a coefficient of
proportionality into an integral form of Darcy’s law. Dubbed
the geometric factor, this coefficient allowed the permeability
to be inferred from the injection rate and the corresponding
gas pressure. The experimental aspect of this work focused on
measuring the permeability of core samples; thus the support
volume was defined by the sensitivity of the geometric factor to
the sample size. Specifically, the support volume was deter-

mined by numerically studying the convergence of the geomet-
ric factor for samples of increasing size to the geometric factor
for the infinite half-space.

Similarly, Suboor and Heller [1995] investigated the support
volume of the minipermeameter experimentally by conducting
a series of measurements over a large sample of Berea sand-
stone. An interesting part of this research considered the in-
fluence of both permeable and impermeable boundary condi-
tions in an effort to emulate the influence of heterogeneities.
Young [1989] explored the anisotropy effects on permeability
measurements and support volumes. More recently, Tidwell
and Wilson [1997] observed that sample boundaries located
within a distance of 2.5–4.0 inner radii of the minipermeame-
ter tip can skew its response by as much as 10%.

Several other researchers have also conducted experimental
studies of the minipermeameter and the geometric factor
model. For example, Mitlin and McLennan [1997] studied its
extension to transient experiments, and Vandewaal et al. [1998]
estimated the inertial effects of several commonly used gases.
To demonstrate the ability of this model to delineate experi-
mental data that has been collected on different support vol-
umes, Tidwell and Wilson [1997] used different sized tip seals in
their minipermeameter experiments. By treating the miniper-
meameter as a linear filter, Tidwell et al. [1999] employed
weighting functions to analyze experimental data collected
from heterogeneous samples.

Despite a significant number of experimental studies and an
increasing number of practical applications (for a detailed re-
view see Hurst and Goggin [1995]), considerable uncertainty
regarding the support volume of the minipermeameter still
remains. Common to these studies is the assertion that the
support volume or measurement scale is defined as the char-
acteristic length of the device at which the measured response
is no longer sensitive to boundaries or properties of the porous
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media [Goggin et al., 1988; Winterbottom, 1990; Suboor and
Heller, 1995]. However, because of the complex nonuniform
flow induced by the minipermeameter, this definition may be
inadequate. In particular, the focus has been on the sensitivity
of the geometric factor and on the pressure distribution (pseu-
dopotential) in the sample, while the kinematic flow structure
(streamlines) has been largely ignored. Yet the behavior of
streamlines provides significant insight into this complex flow
by identifying the zones of most intensive flow. Hence one can
define the support volume as a zone bounded by the streamline
encompassing a significant fraction (e.g., 90%) of the total flow
between the device and atmosphere. This alternative definition
of the support volume was proposed by Zlotnik and Ledder
[1996] to evaluate the support scale of the steady state dipole-
flow test and used by Peursem et al. [1998, 1999] to characterize
the kinematic flow structure of similar recirculatory flow sys-
tems. Further emphasizing that to correctly determine the ex-
periments’ support volume, as well as the influence that this
quantity has on the inferred permeability, a thorough under-
standing of the flow structure is necessary.

The analyses of permeameter models may be divided into
two categories: the finite-domain case, which applies to small
samples, and the infinite-domain case, which applies to suffi-
ciently large samples or measurements in the field. In the first
case, numerical simulations provide a natural approach to in-
vestigate the flow structure. To the best of our knowledge, the
first numerical simulation of the single-phase steady state gas
pressure distribution was conducted by Goggin et al. [1988].
This is a relatively low-resolution simulation study that used a
nonconservative discretization of the underlying partial differ-
ential equation. Some adaptivity in the mesh was used to min-
imize the influence of the nonconservative scheme, and it is
clear that qualitatively the gas pressure distribution is reason-
able. However, the influence of the singularities in the pressure
gradient, which appear at the edges of the tip seal, has not been
resolved. In particular, a highly resolved and accurate numer-
ical simulation is necessary to evaluate the flow structure, and
hence the support volume, of the minipermeameter. We note
that subsequent numerical investigations dealt with transient
gas flow [Jones, 1992] and with effects of the residual water
saturation [Daltaban et al., 1991]].

In contrast, more analytic tools may be applied in the infi-
nite-domain case. In fact, to gain physical insight into this
phenomena, analytical or semianalytical solutions prove to be
invaluable. Unfortunately, solving the boundary value problem
analytically for the gas pressure (or gas pseudopotential) dis-
tribution in the vicinity of a minipermeameter is complicated
by the presence of the mixed boundary conditions. Indeed,
along the surface of a sample, gas pressure is constant inside
the injection tip and in the region open to the atmosphere, and
the pressure gradient is zero across the tip seal. A similar
problem was encountered by Muskat [1937], who considered
flow toward partially penetrating wells. These problems are
often solved by transforming the governing differential equa-
tions into the integral Fredholm equations of the first kind
which are commonly ill-posed [see, e.g., Dagan, 1978; Goggin et
al., 1988; Cole and Zlotnik, 1994; Cassiani and Kabala, 1998].
Alternatively, one can transform the governing equations into
a system of the well-posed Fredholm equations of the second
kind [Cooke, 1963; Ufliand, 1977]. In turn, the auxiliary func-
tions given by the solutions of these Fredholm equations are
used to define the solution of the original differential equation.
This is the approach we pursue here.

The main objective of our investigation is to enhance the
understanding of the minipermeameter device through a semi-
analytic study of the linearized gas model over an infinite
half-space. We begin by introducing the flow model in section
2. Next we develop analytic expressions for the pseudopoten-
tial (section 2.2) and the Stokes’ stream function (section 2.3).
The numerical methods that we used to evaluate these expres-
sions are described in section 3. In section 4 we present our
results and discuss the flow structure and the support volume
of the minipermeameter. We also discuss the geometric factor
and anisotropic media. Finally, our concluding remarks are
given in section 5.

2. Statement of the Problem
Minipermeameters are often used to collect permeability

data on a compact support volume. A typical minipermeame-
ter operates by injecting gases, such as compressed nitrogen
[Goggin et al., 1988], into a permeable sample under a constant
pressure p 5 Pi. The gas is injected through a circular tip with
inner radius ri. A tip seal of outer radius ro (ri , ro) is used
to prevent gas leakage between the injection tip and the sam-
ple surface (Figure 1). Outside the tip seal (r . ro) the
sample’s surface is open to the atmosphere, and thus the pres-
sure at this surface is the atmospheric pressure p 5 Patm.
Without loss of generality we shift this pressure to zero. Since
minipermeameters collect data on small support volumes, it is
reasonable to assume that the material sample is much larger
than the flow domain (i.e., mathematically we assume that the
material sample is infinite).

Isothermal steady state flow of a gas with temperature T ,
molecular weight M , viscosity m( p), compressibility factor
Z( p), and slippage coefficient b is conveniently described by
the real gas pseudopotential [e.g., Tartakovsky, 1999],

F*@ p# 5
M
RT E

0

p s 1 b

m~s! Z~s!
ds , (1)

where R is the universal gas constant. In particular, the mass
flux q* 5 (q*r, q*z)T may be expressed in the familiar form

q*r 5 2Kr

­F*
­r* , (2a)

q*z 5 2Kz

­F*
­ z* , (2b)

Figure 1. Schematic of the minipermeameter configuration.
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where Kr and Kz are the permeabilities in r* and z* directions,
respectively.

2.1. Boundary Value Problem

Combining Darcy’s law (2) with conservation of mass and
assuming an homogeneous medium with azimuthal symmetry
in cylindrical coordinates (r*, z*) gives

Kr

1
r*

­

­r* F r*
­F*~r*, z*!

­r* G 1 Kz

­2F*~r*, z*!

­ z*2 5 0.

(3)

Along the sample surface, z* 5 0,

F* 5 F*i 0 , r* , r i , (4a)

­F*
­ z* 5 0 r i , r* , ro , (4b)

F* 5 0 ro , r* , ` , (4c)

where F*i is the gas pseudopotential at the injection interval,
the Kirchhoff transform of Pi. The flow symmetry with respect
to r* 5 0 implies that

­F*
­r* 5 0 r* 5 0 0 , z* , ` . (4d)

Since the sample remains unaffected by the experiment far
away from the injection tip, we have

lim
z*3`

F* 5 0 0 , r* , ` , (4e)

lim
r*3`

F* 5 0 0 , z* , ` . (4f)

Introducing the dimensionless variables

r 5
r*
ro

z 5 ÎKr

Kz

z*
ro

« 5
r i

ro
(5a)

and the scaled pseudopotential function

F~r , z! 5
F*~r*, z*!

F*i
(5b)

gives

1
r

­

­r F r
­F~r , z!

­r G 1
­2F~r , z!

­ z2 5 0, (6)

subject to the boundary conditions

F 5 1 0 , r , « z 5 0, (7a)

­F

­ z 5 0 « , r , 1 z 5 0, (7b)

F 5 0 1 , r , ` z 5 0, (7c)

­F

­r 5 0 r 5 0 0 , z , ` (7d)

and the decay conditions at infinity

lim
z3`

F 5 0 0 , r , ` , (7e)

lim
r3`

F 5 0 0 , z , ` . (7f)

Therefore, to characterize the properties of the miniper-
meameter, we will investigate the properties of the pseudopo-
tential F that are defined by (6) subject to (7a)–(7f). Although
(6) is a linear partial differential equation, its solution is com-
plicated by the combination of different boundary condition
types along the surface z 5 0 (i.e., Dirichlet, Neumann, and
Dirichlet), which thwarts standard analytic methods, and the
semi-infinite domain, which hinders a direct numerical ap-
proach.

2.2. Pseudopotential Function

The general solution of (6) has the form [Sneddon, 1966,
equation (3.1.2)]

F~r , z! 5 E
0

`

A~j! exp ~2jz!J0~jr! dj , (8)

where J0 is the zeroth order Bessel function of the first kind
and A(j) is an arbitrary function to be determined. Note that
(8) satisfies the boundary conditions (7d)–(7f) automatically,
and therefore A(j) is determined by (7a)–(7c).

We show in Appendix A that A(j) is given by

A~j! 5 « E
0

1 lf i~l!

Î1 2 l2 J0~«jl! dl

1 E
0

1 fo~m!

Î1 2 m2 J0S j

mD dm , (9)

where the functions f i(l) and fo(m) are the solutions of a
system of Fredholm integral equations of the second kind,

f i~l! 5
2
p

2
2
p E

0

1

@~l , s; «!fo~s! ds , (10a)

fo~m! 5 2
2«

p E
0

1

@~m , t; «!f i~t! dt . (10b)

Here 0 # l # 1, 0 # m # 1, and the kernel @ is given by

@~ x , y; «! 5
Î1 2 ~«y!2

1 2 ~«xy!2

y

Î1 2 y2 . (11)

Therefore solving (10) uniquely determines the distribution of
the pseudopotential F(r , z).

2.3. Stokes’ Stream Function

Stokes’ stream function, C*(r*, z*), is defined by the fol-
lowing relations [Bear, 1972, p. 229]:

­C*
­r* 5 2Kz r*

­F*
­ z* , (12a)

­C*
­ z* 5 Kr r*

­F*
­r* , (12b)

subject to C*(0, 0) 5 0. Level curves of C* represent stream-
lines, and hence this function provides a natural mechanism for
analyzing flow structure.

Using dimensionless quantities (5) and introducing the di-
mensionless Stokes’ stream function,
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C~r , z! 5
C*~r*, z*!

F*i roÎKrKz
, (13)

yields

­C

­r 5 2r
­F

­ z , (14a)

­C

­ z 5 r
­F

­r , (14b)

where we now have the condition C(0, 0) 5 0. Hence it follows
from (8) that Stokes’ stream function, in general form, is given
by

C~r , z! 5 r E
0

`

A~j! exp ~2jz!J1~jr! dj , (15)

and therefore it is uniquely determined by A(j).

3. Numerical Methods
We are interested in the behavior of both the pseudopoten-

tial and the stream function over the (r , z) plane. We are
particularly interested in the dependence of measurable quan-
tities on the device parameter « and in the solution near the
singular points (ri, 0) and (ro, 0). In this section we develop
expressions for these quantities that are suitable for numerical
computation and comment on their evaluation.

3.1. Solving the Integral Equations

One possible approach to solving the system of integral
equations given in (10) is to apply the standard Nystrom
method [e.g., see Delves and Mohamed, 1985]. However, in this
case analytically decoupling the equations proves to be a very
nice simplification that significantly reduces the solution cost.
First, substitution of (10b) into (10a) yields a single equation
for f i(l), and second, substitution of (10a) into (10b) yields a
single equation for fo(m). This decoupled system may be
written as

f i~l! 5
2
p

1
4
p2 E

0

1

@̂~l , s; «!f i~s! ds , (16a)

fo~m! 5
4
p2 a~m; «! 1

4
p2 E

0

1

@̂~m , t; «!fo~t! dt ,

(16b)

where 0 # l # 1, 0 # m # 1, and the kernel is given by

@̂~ x , y; «! 5 « E
0

1

@~ x , s; «!@~s , y; «! ds (17)

and the inhomogeneous term is

a~m; «! 5 2« E
0

1

@~m , s; «! ds . (18)

Now we apply the Nystrom method to (16a) and (16b) inde-
pendently. We note that all of the integrands contain the in-
tegrable endpoint singularity 1/=1 2 s2 for s the variable of
integration. Using uniform abscissae on the interval [0, 1], we

treat this term as a weight function for which quadrature
weights are computed that integrate cubic polynomials exactly.
Alternatively, an additional set of transformations could be
introduced to eliminate this endpoint singularity. Using the
properties of this transformation and the properties of the
transformed system, one can show that f i(l) and fo(m) are
continuous on [0, 1] for « Þ 1 [Delves and Mohamed, 1985,
theorem 4.2.2].

3.2. Computing the Pseudopotential

Having solved for f i(l) and fo(m), we are in a position to
compute the pseudopotential. We first rewrite (8) in the form

F~r , z; «! 5 F i~r , z; «! 1 Fo~r , z; «! (19)

and reverse the order of integration to obtain

F i~r , z; «! 5 « E
0

1 lf i~l!

Î1 2 l2 (F~r , z , «l! dl , (20)

Fo~r , z; «! 5 E
0

1 fo~m!

Î1 2 m2 (FS r , z ,
1
mD dm. (21)

Here

(F~r , z; d! 5 E
0

`

e2zzJ0~dz!J0~rz! dz 5
2
p

g_~2 Îrdg! ,

(22)

where g 5 =z2 1 (r 1 d)2 and _(m) is the complete ellip-
tic integral of the first kind. To integrate (22), we used the work
of Gradshteyn and Ryzhik [1980, equation (6.612(3))] and
Abramowitz and Stegun [1972, equation (8.13.3)]. The com-
plete elliptic integral _(m) was computed with subroutines
from the SLATEC library (K. W. Fong et al., Guide to the
SLATEC Common Mathematical Library, 1993, http://
www.netlib.org/slatec/guide).

3.3. Computing Stokes’ Stream Function

The computation of Stokes’ stream function follows simi-
larly from (15), which we rewrite as

C~r , z; «! 5 C1~r , z; «! 1 C2~r , z; «! . (23)

Once again, reversing the order of integration we obtain

C1~r , z; «! 5 2«r E
0

1 lf i~l!

Î1 2 l2 (C~r , z , «l! dl , (24)

C2~r , z; «! 5 2r E
0

1 fo~m!

Î1 2 m2 (CS r , z ,
1
mD dm , (25)

where

(C~r , z; d! 5 E
0

`

e2zzJ0~dz!J1~rz! dz . (26)

The interaction of two Bessel functions of different order with
variably scaled arguments results in a highly oscillatory and
slowly decaying integrand, which, for an arbitrary point (r , z),
cannot be integrated analytically and is very difficult to treat
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numerically. Thus this numerical integration was performed
with the specialized routines developed by Lucas [1995].

This approach worked quite well for z . 0, although com-
putationally it is significantly more expensive than evaluating
the pseudopotential (22). However, for z 3 01 the numerical
quadrature exhibits poor convergence. Fortunately, our pri-
mary interest is in the case z 5 0 (i.e., exit flow), for which
further simplifications are possible. Specifically, it follows from
the dimensionless form of (2b) and (14a) that

qz~r , z! 5 2
­F

­ z . (27)

Hence differentiating (8), letting z 3 01, using (A2a)–(A2c),
and rewriting (A16) and (A17) gives

qz~r , 0! 5 5
1

Î«2 2 r2 f iS r
«D 0 # r , «

0 « # r # 1
1

r2Îr2 2 1
foS 1

rD 1 , r , ` .

(28)

In section 3.2 we concluded that f i(l) and fo(m) are contin-
uous for « Þ 1. Therefore (28) shows that qz(r , 0) has inte-
grable singularities of the form 1/=« 2 r as r 3 «2 and
1/=r 2 1 as r 3 11.

Similarly, an expression for the stream function at z 5 0 can
be derived by integrating (27),

2p E
0

r

qz~r , z!r dr 5 2p@C~r , z! 2 C~0, z!# . (29)

Solving for C(r , z), noting that C(0, 0) 5 0, taking the limit as
z 3 01, and transforming the range of integration leads to

C~r , 0! 5 5 « E
s0

1

f i~ Î1 2 s2! ds 0 # r , « ,

Cm « # r # 1,

Cm 1 E
u0

p/ 2

fo~sin ~u !! du 1 , r , ` ,

(30)

where s0 5 =1 2 (r/«)2, u0 5 arcsin (1/r), and Cm denotes
the maximum of the Stokes’ stream function, which is given by

Cm~«! 5 « E
0

1

f i~ Î1 2 s2! ds . (31)

To evaluate the integrals that appear in (30) and (31) we use
the compound Simpson’s rule with equally spaced abscissae.
The interpolation of f i(l) and fo(m) utilizes the discrete
form of (16a) and (16b).

To facilitate the investigation of the solution’s dependence
on the tip-seal’s size «, we consider the normalized Stokes’
stream function,

c~r , z! 5
C~r , z!

Cm~«!
, (32)

whose range, 0 # c(r , z) # 1, is independent of «.

4. Results and Discussion
Computations were performed for the three tip-seal ratios, «

5 1/4, 1/2, and 3/4, which cover the range of most practical

applications [Suboor and Heller, 1995, Table 1]. We begin our
discussion by analyzing the flow structure corresponding to the
minipermeameter experiment. We then investigate the mea-
surement support volume and integral flow characteristics,
such as the mass flux distribution along the injection tip. Fi-
nally, we comment on the geometric factor and anisotropic
media.

4.1. Flow Structure and Support Volume

Figures 2a–2c show the lines of equal pseudopotential (solid
lines) and the Stokes’ streamlines (dashed lines). These are
normalized with the Kirchhoff transformation (1) of the injec-
tion gas pressure Pi and the minimum Cm of the Stokes’
stream function (31), respectively. As expected, all flow con-
figurations exhibit a boundary layer along the sample surface
( z 5 0), wherein the equipotentials change their direction
from normal to the tip to parallel to the tip (r 5 « and r 5 1).
Consequently, the gradient of the pseudopotential is singular
at the edges of the tip seal. These important flow characteris-
tics were not resolved by the low-resolution numerical simula-
tions of Goggin et al. [1988, Figure 3]. Moreover, the absence
of any numerical artifacts or distortions (e.g., oscillations) in
the contours of Figures 2a–2c provides a convincing qualitative
measure of the solution’s accuracy.

The singularities in the gas flux distribution at the surface of
the sample, equivalently the z component of the gradient of the
pseudopotential, are shown clearly in Figure 3. Specifically, the
flux is virtually uniform in the regions away from the injection
tip’s edges, but at these points (r 5 « and r 5 1) it becomes
infinite. In section 3.3 our analysis showed that in the vicinity of
the tip’s inner radius, r 3 «2, qz ; 1/=« 2 r and that in the
vicinity of the tip’s outer radius, r 3 11, qz ; 1/=r 2 1.

Further inspection of Figures 2a–2c reveals two distinct flow
zones in the vicinity of the permeameter. The first zone is
bounded between the sample surface ( z 5 0) and the surface
obtained by rotating the streamline C 5 0.1 about the z axis.
As flow is most intense in this zone, we will call it the rapid
zone. Despite its small size the rapid zone is a conduit for the
majority (90%) of the mass exchange between the permeame-
ter and atmosphere. We note that the approximately semitor-
oidal shape of the rapid zone suggests that a transformation to
toroidal coordinates might lead to an approximate analytical
solution for the pressure distribution [Ufliand, 1977]. We refer
to the region that contains the remainder of the flow as the
slow zone. Although of infinite extent, this region is a conduit
for only the remaining 10% of the mass flux. Naturally, such a
subdivision of the flow domain is somewhat subjective, and a
more quantitatively optimal subdivision may be possible
through further modeling and experimentation. Nevertheless,
the choice of the 10% streamline is reasonable for our pur-
poses.

For the tip-seal ratios shown in Figures 2a–2c, the 10%
streamline intersects the injection tip ( z 5 0 and 0 # r # «)
at a distance of approximately 0.4–0.5 times the inner radius
ri. Because of the divergent flow geometry the rapid zone
covers a relatively small portion of the flow domain in the
vicinity of the permeameter, which leads to a blind spot directly
below the device. To highlight this point, the 10% streamlines
are isolated in Figure 4 along with the hemispherical region
(dotted line) that has been used to conceptualize the per-
meameter flow previously by Goggin et al. [1988, Figure 2],
Suboor and Heller [1995, Figure 9], and Tidwell et al. [1999,
Figure 1]. Clearly, there is a substantial difference between the
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geometries of the rapid zone and a hemisphere defined by the
effective radius of Tidwell et al. [1999, Figure 10]. This appar-
ent skewing of the rapid zone from the center of the measure-
ment device (r 5 0) leads one to question the validity of the
empirical weighting functions of Tidwell et al. [1999, Figure 10],
which assigns the largest weight to the region along the r 5 0
axis. Moreover, it is apparent from Figure 4 that the size of the
blind spot increases with the tip-seal ratio, «.

The existence of such blind spots has a profound implication
for the mapping of spatial distributions of permeability. In-
deed, for a semi-infinite domain typical of field measurements
the local permeabilities that one measures with miniper-
meameters appear to be more strongly associated with a sup-
port volume situated in a semitoroid around the tip seal and
not in a hemisphere directly below the device. In contrast, we
note that for sufficiently thin samples the blind spot would be
reduced, although the half-space geometric factor would not
be valid.

4.2. Geometric Factor and Support Volume

The application of the minipermeameter device relies on the
geometric factor G0 to infer a local permeability estimate from
a measured gas injection rate. Thus it may seem very natural to

Figure 2. Pseudopotential F(r , z), solid lines, and the
Stokes’ stream function c(r , z), dashed lines, for (a) « 5 1/4,
(b) « 5 1/2, and (c) « 5 3/4.

Figure 3. Inflow/outflow profiles, which are singular at the
edges of the tip seal, plotted for « 5 1/4, 1/2, and 3/4.

Figure 4. The 10% streamline plotted for three values of the
tip-seal ratio, « 5 1/4, 1/2, and 3/4. The hemispherical region is
also shown (dotted line) to highlight the potential blind spot of
the minipermeameter.
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base estimates of the permeameter’s support volume on the
sensitivity of G0 to sample boundaries. However, in general,
this approach may be inadequate. In particular, the work of
Goggin et al. [1988] focused on the convergence of the geo-
metric factor for finite core samples to the geometric factor for
the infinite half-space. On the basis of this analysis, Goggin et
al. [1988, p. 93] found that a sample with both the radius and
length equal to 4 times the internal tip radii, r*s 5 4ri, is
effectively infinite. Hence in our dimensionless coordinates
this gives a support volume defined by rs 5 4« . It then follows
from Figure 5 that this rs corresponds to a support volume
accounting for only 70% of the total flow for the tip-seal ratio
« 5 0.5. Furthermore, noting that this proposed bound has the
radius and length equal and that intuitively there is very little
flow near the (rs, zs) corner of the cylindrical sample, a hemi-
spherical support volume could be defined by this “effective
radius” [Tidwell et al., 1999]. However, given the support vol-
ume geometry defined by the 10% streamline, this is mislead-
ing. In fact, this is precisely where the advantage of using
streamlines becomes apparent. While the sensitivity of the
geometric factor is important, particularly in applying the in-
finite half-space values of G0, an accurate estimate of the
geometric factor can, in theory, be computed for any sample
size. In contrast, a critical problem in mapping a permeability
distribution is determining the volume of the medium that is
actually interrogated by the device. Granted, the exact descrip-
tion of a particular streamline may be too complicated to be
useful in practice. However, key properties of a particular
streamline are readily computed for a range of tip-seal ratios.
For example, one can introduce the exit radius re of a stream-
line as a geometric characteristic of the support volume. This
exit radius is shown as a function of « in Figure 6 for the 5%,
10%, and 30% streamlines. This graph reveals that regardless
of what fraction of the total flow is used to define the support
volume (95%, 90%, or 70%), the exit radius re decreases with
«. It also indicates that for « , ;0.5 the simple bound (i.e.,
re 5 rs 5 4«) proposed by Goggin et al. [1988, p. 93] is not
valid.

Other important geometric characteristics of a streamline
might include the inlet radius, the maximum depth, and the
first radial moment. For example, it is clear from Figure 4 that,
similar to the exit radius, the depth decreases with the tip-seal
ratio «. In fact, the depth of investigation is approximately half

the exit radius. Hence the support volume of the miniper-
meameter experiment is located close to the sample surface.

Since the definition of the support volume in terms of the
percentage of the total flow is somewhat arbitrary, it might be
possible to bound this volume by the 30% rather than the 10%
streamline. However, such a definition has a number of poten-
tial drawbacks. First, accounting for only 70% of the total flow,
it might lead to biased estimates of permeability. Second, it
increases the size of the blind spot directly below the tip (Fig-
ures 2a–2c), and last, but not least, the 30% streamline is
relatively insensitive to the tip’s aspect ratio « (Figure 6). This
might be a crucial limitation since varying the aspect ratio is
often used to collect permeability data on different supports.

The increasing application of the geometric factor model
raises questions beyond the minipermeameter’s support vol-
ume. For example, what is the physical meaning of G0? What
is the influence of anisotropy and heterogeneities on the mea-
sured permeability? Our analysis provides valuable insight into
these questions. First, consider the definition of the geometric
factor. Following Goggin et al. [1988, equation (11)], we exam-
ine the total mass flux Q of the gas injected through the
circular tip seal,

Q 5 2p E
0

ri

q*z~r*, 01!r* dr*. (33)

Substituting q*z from (2b) and transforming the integrand to
the dimensionless quantities in (5) gives

Q 5 2r iÎKzKr G0~«!F*i, (34)

where

G0~«! 5
2p

« E
0

« ­F

­ z U
z50

r dr . (35)

For isotropic media, Goggin et al. [1988, equation (12)] used
(35) to define the geometric factor. Combining (35) with the
definition of the Stokes’ stream function (14a), we arrive at an
alternative definition,

G0~«! 5
2p

«
Cm~«! , (36)

Figure 5. The normalized Stokes’ stream function at the
sample’s surface, c(r , 0), plotted for « 5 1/4, 1/2, and 3/4.

Figure 6. The exit radius of a streamline, c(re, 0) 5 C ,
plotted as a function of « for C 5 5%, 10%, and 30%. In all
cases, re decreases with increasing tip-seal ratio «.
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which relates the geometric factor G0 to the maximum of the
stream function. Figure 7 shows the geometric factor evaluated
with (36) and is in excellent agreement with Goggin et al. [1988,
Figure 6], in which their parameter bD 5 1/« . We emphasize
that in contrast to the ill-posed formulation of Goggin et al.
[1988] we obtain G0 accurately and efficiently from a well-
posed Fredholm integral equation of the second kind.

Second, it is apparent from (34) that inherent in the geo-
metric factor model of the permeameter experiment is the
geometric average of the diagonal tensor coefficients, =KzKr.
Although for isotropic media this coefficient reduces to the
corresponding scalar permeability, and hence (34) is consistent
with Goggin et al. [1988, equation 1], its presence implies that
a systematic bias in the inferred permeability for anisotropic
formations may result from the assumption of isotropy. Nev-
ertheless, this limited model may provide insight into the ap-
plication of minipermeameters to certain classes of heteroge-
neous material. In particular, homogenization results
(upscaling) could be combined with (34) to analyze layered
media. This is relevant to studies such as that of Suboor and
Heller [1995] in which the support volume depth was investi-
gated experimentally using a two-layer configuration. How-
ever, the influence of general anisotropy and general hetero-
geneous structure is beyond the scope of this model.

5. Conclusions
We investigated the gas flow structure of the miniper-

meameter experiment by deriving semianalytical solutions for
the gas pseudopotential and the stream function. The 10%
streamline (the line bounding 90% of the total flow) was used
to define the support volume of the experiment. The analysis of
our semianalytical solutions leads us to the following major
conclusions:

1. The method of double integral equations, which we used
to obtain our solution, is computationally efficient and accu-
rate. Unlike previous semianalytical studies, which are based
on ill-posed integral equations [e.g., Goggin et al., 1988], our
solution is defined by Fredholm equations of the second kind,
and thus its formulation is well-posed.

2. The support volume has the form of a semitoroid adja-
cent to the minipermeameter tip. The support volume covers a
relatively small portion of the flow domain in the vicinity of the

minipermeameter, which leads to a blind spot directly below
the device. The existence of such blind spots has a profound
implication for mapping of spatial distributions of permeabil-
ity.

3. The complex geometry of the support volume makes the
reliance on the traditionally used effective radius for its char-
acterization questionable. Instead, one can attempt to charac-
terize such a geometry in terms of the exit radius and depth of
investigation. The former is about twice as big as the latter.
The size of the support volume decreases with the ratio of the
inner to outer radii of the tip.

4. In principle, it is possible to use the different tip-seal
ratios for collecting permeability data on varying support vol-
umes. However, one should be aware that the size of the blind
spot increases with this parameter.

The concluding observation is regarding the contribution of
the local permeability values to the overall estimate from the
minipermeameter test. In particular, our work suggests that
the width of the stream tube is an indicator of the sensitivity to
local heterogeneity. For example, the impact of a small ob-
struction in the immediate vicinity of the tip seal, or under the
tip seal, will effect kinematic flow structure more than the same
obstruction near the z axis or deeper in the sample. Quantifi-
cation of this spatial weighting for heterogeneous media re-
quires a different approach which is beyond the scope of this
paper.

Appendix A: Fredholm Equations
In deriving (9)–(11) of section 2.2, we follow a general pro-

cedure outlined by Cooke [1963]. Substituting (8) into (7a)–
(7c), we obtain

E
0

`

A~j!J0~jr! dj 5 1 0 # r # « , (A1a)

E
0

`

jA~j!J0~jr! dj 5 0 « , r # 1, (A1b)

E
0

`

A~j!J0~jr! dj 5 0 1 , r # ` . (A1c)

We further note that these boundary conditions imply

E
0

`

jA~j!J0~jr! dj 5 f i~r! 0 # r # « , (A2a)

E
0

`

jA~j!J0~jr! dj 5 0 « , r # 1, (A2b)

E
0

`

jA~j!J0~jr! dj 5 fo~r! 1 , r # ` , (A2c)

where f i(r) and fo(r) are some unknown functions to be de-
termined. Applying Hankel’s inversion theorem to (A2) yields

A~j! 5 E
0

«

lf i~l!J0~jl! dl 1 E
1

`

mfo~m!J0~jm! dm .

(A3)

Figure 7. The geometrical factor G0 computed using the
stream function relationship given in equation (36) is in excel-
lent agreement with Goggin et al. [1988].
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Substituting (A3) into (A1a), then changing the order of
integration, while noting that

( i~r , l! 5 E
0

`

J0~rj!J0~lj! dj

5
2
p E

0

min ~l, r! ds

Îl2 2 s2 Îr2 2 s2 , (A4)

leads, after some algebraic manipulation, to

1 2 E
1

`

lfo~l!( i~r , l! dl 5
2
p E

0

r E
s

« lf i~l! dl

Îl2 2 s2 Îr2 2 s2 ds .

(A5)

Equation (A5) is a special case of the Abel type integral equa-
tion [Sneddon, 1966, equation (2.3.8)],

G~ x! 5 E
x

b F~t! dt
~t2 2 x2!a , (A6)

where 0 , a , 1 and a , x , b , whose solution is

F~t! 5 2
2
p

sin ~pa!
d
dt E

t

b uG~u! du
~u2 2 t2!12a , (A7)

with a , t , b . Hence it follows from (A5) that

Î«2 2 l̂2 f i~l̂! 5
2
p

2
2
p E

1

` t Ît2 2 «2

t2 2 l̂2 fo~t! dt , (A8)

where 0 # l̂ # «.
Substituting (A3) into (A1c), then changing the order of

integration, while noting that now

(o~r , l! 5
2
p E

max ~l, r!

` ds

Îs2 2 l2 Îs2 2 r2 , (A9)

leads, after some algebraic manipulation, to

2E
0

«

lf i~l!(o~r , l! dl 5
2
p E

r

` E
1

s lfo~l! dl

Îs2 2 l2

ds

Îs2 2 r2 .

(A10)

Taking into account that (A10) is a special case of the Abel
type integral equation [Sneddon, 1966, equation (2.3.7)],

G~ x! 5 E
a

x F~t! dt
~ x2 2 t2!a , (A11)

whose solution is

F~t! 5
2
p

sin ~pa!
d
dt E

a

t uG~u! du
~t2 2 u2!12a , (A12)

yields

Îm̂2 2 1 fo~m̂! 5 2
2
p E

0

« s Î1 2 s2

m̂2 2 s2 f i~s! ds , (A13)

where 1 # m̂ , `.
Furthermore, we transform the range of integration to (0, 1),

in both (A8) and (A13), and we introduce the new parameters
(l, m) that are consistent with this transformation. Specifically,
we define

s 5 «s f l̂ 5 «l ,

t 5 1/t f m̂ 5 1/m ,

and after sufficient manipulation we obtain

« Î1 2 l2 f i~l«! 5
2
p

2
2
p E

0

1 Î1 2 ~«t!2

1 2 ~«lt!2

fo~1/t!

t2 dt ,

(A14)

1
m2 Î 1

m2 2 1 foS 1
mD 5 2

2
p

«2 E
0

1 s Î1 2 ~«s!2

1 2 ~«ms!2 f i~«s! ds .

(A15)

Defining the new functions

f i~l! 5 « Î1 2 l2 f i~«l! , (A16)

fo~m! 5
1
m2 Î 1

m2 2 1 foS 1
mD (A17)

and transforming the range of integration to (0, 1), in the
second term on the right-hand side of (A3), leads directly to
(9)–(11).

Acknowledgments. We are grateful to Stephen Lucas for gener-
ously providing his subroutines to evaluate the Bessel function inte-
grals. Also, we thank Alberto Guadagnini and the other referees for
their insightful and constructive comments. Finally, we acknowledge
our stimulating discussions with John Wilson regarding the practical
applications of the minipermeameter.

References
Abramowitz, M., and I. A. Stegun, Handbook of Mathematical Func-

tions, Dover, Mineola, N. Y., 1972.
Bear, J., Dynamics of Fluids in Porous Media, Elsevier Sci., New York,

1972.
Cassiani, G., and Z. J. Kabala, Hydraulics of a partially penetrating

well: Solution to a mixed type boundary value problem via dual
integral equations, J. Hydrol., 211, 100–111, 1998.

Cole, K., and V. A. Zlotnik, Modification of Dagan’s numerical
method for slug and packer test interpretation, in Computational
Methods in Water Resources X, vol. 1, edited by A. Peters et al.,
Kluwer Acad., Norwell, Mass., 1994.

Cooke, J. C., Triple integral equations, Q. J. Mech. Appl. Math., XVI,
193–203, 1963.

Dagan, G., A note on packer, slug, and recovery tests in unconfined
aquifers, Water Resour. Res., 14, 929–934, 1978.

Daltaban, T. S., J. S. Wang, and J. S. Archer, Understanding the
physics of probe permeameter measurements through the use of the
probe permeameter simulation program min-per, in Minipermeam-
etry in Reservoir Studies: PSTI, Edinburgh, 1991.

Delves, L. M., and J. L. Mohamed, Computational Methods for Integral
Equations, Cambridge Univ. Press, New York, 1985.

Dykstra, H., and R. L. Parsons, The prediction of oil recovery by
waterflood, in Secondary Recovery of Oil in the United States, 2nd ed.,
pp. 160–174, Am. Pet. Inst., New York, 1950.

Goggin, D. J., R. L. Thrasher, and L. W. Lake, A theoretical and
experimental analysis of minipermeameter response including gas
slippage and high velocity flow effects, In Situ, 12, 79–116, 1988.

Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals, Series, and
Products, Academic, San Diego, Calif., 1980.

2441TARTAKOVSKY ET AL.: MINIPERMEAMETER FLOW STRUCTURE



Hurst, A., and D. Goggin, Probe permeability: An overview and bib-
liography, AAPG Bull., 79, 463–473, 1995.

Jones, S. C., The profile permeameter: A new, fast, accurate miniper-
meameter: Spe 24757, paper presented at 67th Annual Technical
Conference, Soc. of Pet. Eng., Washington, D. C., 1992.

Lucas, S. K., Evaluating infinite integrals involving products of Bessel
functions of arbitrary order, J. Comput. Appl. Math., 64, 269–282,
1995.

Mitlin, V. S., and J. D. McLennan, Simultaneously measuring perme-
ability and porosity using probe permeameter techniques: A theo-
retical analysis, In Situ, 21, 187–222, 1997.

Muskat, M., The Flow of Homogeneous Fluids Through Porous Media,
McGraw-Hill, New York, 1937.

Peursem, D. V., G. Ledder, and V. Zlotnik, The kinematic flow struc-
ture for the Gvirtzman-Gorelick in situ voc remediation system,
Transp. Porous Media, 30, 363–376, 1998.

Peursem, D. V., V. Zlotnik, and G. Ledder, Groundwater flow near
vertical recirculatory well: Effect of skin on flow geometry and travel
times with implications for aquifer remediation, J. Hydrol., 222,
109–122, 1999.

Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory,
North-Holland, New York, 1966.

Suboor, M. A., and J. P. Heller, Minipermeameter characteristics
critical to its use, In Situ, 19, 225–248, 1995.

Tartakovsky, D. M., Prediction of steady-state flow of real gases in
randomly heterogeneous porous media, Physica D, 133, 463–468,
1999.

Tidwell, V. C., and J. L. Wilson, Laboratory method for investigating
permeability upscaling, Water Resour. Res., 33, 1607–1616, 1997.

Tidwell, V. C., A. I. Gutjahr, and J. L. Wilson, What does an instru-
ment measure? Empirical spatial weightning functions calculated
from permeability data sets measure on multiple sample supports,
Water Resour. Res., 35, 43–54, 1999.

Ufliand, Y. S., Method of Dual Equations for Problems of Mathematical
Physics (in Russian), Nauka, Moscow, 1977.

Vandewaal, W. W., D. Mikes, and H. Bruining, Inertia factor mea-
surements from pressure-decay curves obtained with probe per-
meameters, In Situ, 22, 339–371, 1998.

Winterbottom, F. A., Numerical modeling of a minipermeameter,
Master’s thesis, Heriot-Watt Univ., Edinburgh, Scotland, 1990.

Young, G. R., Determining permeability anisotropy from a core plug
using a minipermeameter, Master’s thesis, Univ. of Tex., Austin,
1989.

Zlotnik, V., and G. Ledder, Theory of dipole flow in uniform aniso-
tropic aquifers, Water Resour. Res., 32, 1119–1128, 1996.

J. D. Moulton, Mathematical Modeling and Analysis Group, Los
Alamos National Laboratory, Los Alamos, NM 87545.
(moulton@lanl.gov)

D. M. Tartakovsky, Computer Research and Applications Group,
Los Alamos National Laboratory, Los Alamos, NM 87545.
(dmt@lanl.gov)

V. A. Zlotnik, Department of Geosciences, University of Nebraska,
Lincoln, NE 68588. (vzlotnik@unl.edu)

(Received November 30, 1999; revised May 4, 2000;
accepted May 25, 2000.)

TARTAKOVSKY ET AL.: MINIPERMEAMETER FLOW STRUCTURE2442


